问答题(2020年甘肃省天水市

天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.

(1)A种商品每件的进价和B种商品每件的进价各是多少元?

(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?

(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.

答案解析

(1)设A种商品每件的进价为x元,B种商品每件的进价为(x-20)元.依题意得2000/x=1200/(x-20),解得x=50,经检验x=50是原方程的解且符合题意当x=50时,x-20=30.答:A种商品每件的进价为50元,B种商品每件的进价为30元;(2)设购进A种商品a件,购进B种商品(40-a)件,依题意得解得40/3≤a≤18,∵a为整数∴a=14,15,16,17,18.∴该商店有5种进货方案;(3)设销售A、B两种商品总获利y元,则y=(80-50-m)...

查看完整答案

讨论

性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为_________. 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为_________;(2)如图(2),在四边形EFGH中,EF=EG=EH.在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上. (1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)

如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k/x (k≠0)的图象交于第二、四象限的点A(-2,a)和点B(b,-1),过A点作x轴的垂线,垂足为点C,ΔAOC的面积为4. (1)分别求出a和b的值;(2)结合图象直接写出mx+n>k/x中x的取值范围;(3)在y轴上取点P,使PB-PA取得最大值时,求出点P的坐标.

为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.

先化简,再求值: - ÷ ,其中a=.

计算:4sin⁡60°-|-2|+20200-+()-1.

如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将ΔADF绕点A顺时针旋转90°得到ΔABG.若DF=3,则BE的长为__________.

如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_________.

如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.

2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势。经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元,若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费。

分式方程2/(x-1)-1=0的解是【 】

方程2/(x+5)=1/x的解为__________.

某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高 20%进行销售,进货价少于 2080元,销售额要大于 2460元,求有几种方案?

解方程:x/(2x-3)+5/(3x-2)=4.

施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多 50 米,才能按时完成任务,求原计划每天施工多少米。设原计划每天施工x米,则根据题意所列方程正确的是【 】

某超市预测某饮料有发展前途,用 1600 元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于 1200 元,那么销售单价至少为多少元?

解分式方程:2x/(x+1)+3/(x-1)=2

解方程2/(x+1)+1=x/(x-1).

方程1/(x-3)=2/x的解为【 】

某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价______元。

某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2000元,则标价________元.

下列方程没有实数根的是【 】

某商品的标价为200元,8折销售仍赚40元,则商品进价为【 】元.

下表为深圳市居民每月用水收费标准,(单位:元/m³).用水量 单价x a剩余部分 a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户 5月份交水费 71元,请问该用户用水多少立方米?

给出一种运算:对于函数y=xn,规定y'=nxn-1.例如:若函数y=x4则有y'=4x3.已知函数y=x3,则方程y'=12的解是【 】

一球鞋厂,现打折促销卖出 330双球鞋,比上个月多卖 10%,设上个月卖出x双, 列出方程【 】

2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.

一个三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,则该三角形的周长为_______.

一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是【 】