如图,平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).
(1)求AB所在直线的解析式;
(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD其中C(c,0).当c=2时,会从c处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.
①若有光点P弹出,试推算m,n应满足的数量关系:
2当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.
(1)设直线AB的解析式为y=kx+b(b≠0),把点A(-8,19),B(6,5)代入得:,解得:,∴AB所在直线的解析式为y=-x+11.(2)① n=-2m,理由如下:若有光点P弹出,则c=2,∴点C(2,0),代入y=mx+n(m≠0,y≥0)得:2m+n=0.∴若有光点P弹出,m,n满足的数量关系为n=-2m.②由①得n=-2m,∴y=mx+n=mx-2m=(x-2)m,∵点A(-8,19),B(6,5),AB所在直线的解析式为y=-x+11,∴线段AB上的其它整点为:(-7,18),(-6,17),(-5,16),(-4,15),(-3,14),(-2,13),(-1,12),(0,11),(1,10),(2,9),(3,8),(5,6),∵有光点P弹出,并击中线段AB上的整点,∴直线CD过整数点,当击中线段AB上的整点(-8,19)时,19=(-8-2)m,得m=-19/10(不合题意,舍去),当击中线段AB上的整点(-7,18)时,18=(-7-2)m,得m=-2,当击中线段AB上的整点(-6,17)时,17=(-6-2)m,得m=-17/8(不合题意,舍去),当击中线段AB上的整点(-...
查看完整答案,请下载word版
自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是【 】
下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是【 】
泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】
如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为cm.
如图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.
如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F,求∠C和∠E的度数.
如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.
如图,在平面直角坐标系中,ΔOAB的顶点A,B的坐标分别为(3,),(4,0).把ΔOAB沿x轴向右平移得到ΔCDE,如果点D的坐标为(6,),则点E的坐标为.
在半面直角坐标系中,点(3,2)关于x轴对称的点的坐标为【 】
如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】
已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】