如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5
/3与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
(1)如图,连接HM. ∵直线y=-/3 x-5/3中,令y=0,则x=-5,即OE=5;令x=0,则y=-5/3,故F点的坐标为(0,-5/3),∴EF==10/3,∵M(-1,0),∴EM=4,∵∠E=∠E,∠AOE=∠EHM,∴△EMH∼△EFO,∴HM/OF=EM/EF,即,∴r=2;∵CH是Rt△EMH斜边上的中线,∴CH=1/2 EM=2.(2)如图,连接DQ、CQ. ∵∠CHP=∠D,∠CPH=∠QPD,∴△CHP∼△QDP.∴CH:DQ=HP:PD=2:3,...
查看完整答案,请下载word版
自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是【 】
下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是【 】
泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】
如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为cm.
如图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.
如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F,求∠C和∠E的度数.
如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.
如图,在平面直角坐标系中,ΔOAB的顶点A,B的坐标分别为(3,),(4,0).把ΔOAB沿x轴向右平移得到ΔCDE,如果点D的坐标为(6,),则点E的坐标为.
在半面直角坐标系中,点(3,2)关于x轴对称的点的坐标为【 】
如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】
已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】