证明题(2015年广东省广州市

如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF.求证:BE=AF.

答案解析

在正方形ABCD中,AB=AD,∠BAE=∠D=90°.

在△ABE和△ADF中,AB=AD,BAE=D,AE=DF.

∴△ABE≌△ADF(SAS),

∴BE=AF.

讨论

边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.

综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒. 猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A1B1C1的大小关系:(2)证明 (1)中你发现的结论.

如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为【 】

如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.

如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为【 】

如图,在正方形ABCD中,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x形成的函数关系图像大致是【 】

如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN : S△ADM =1 : 4.其中正确的结论有【 】

完全相同的4个正方形面积之和是 100,则正方形的边长是【 】

如图所示,四边形 ABCD,DEFG,GHIJ 均为正方形,且SABCD=10,SGHI=1,则正方形 DEFG 的边长可以是________(写出一个答案即可).

如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,则CF+EF的最小值为______.

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

已知△ABC是直角三角形,∠B=90°,AB=3,BC=5,AE=2√5,连接CE,以CE为底作直角三角形CDE,CD=DE. F是AE边上的一点,连接BD,BF,∠FBD=45°,则AF长为________.

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4√3.将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板AB,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.

如图,△ABC绕点A顺时针旋转45°得到△AB' C'若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于________.

如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1)填空:AD=________(cm),DC=________(cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm²),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=(√6+√2)/4,sin15°=(√6-√2)/4)

如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于点D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°,若AC=a,求CI的长.

如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.

已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,得Rt△ODC,如题1图,连接BC.(1)填空:∠OBC=________°;(2)如题1图,连接AC,作OP⊥AC,垂足为点P,求OP的长度.(3)如题2图,点M,N同时从点O出发,在△OCB边上运动,点M沿O→C→B路径匀速运动,点N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为每秒1.5个单位长度,点N的运动速度为每秒1个单位长度,设运动时间为x s,△OMN的面积为y.求:当x为何值时y取得最大值,最大值为多少?(结果分母可保留根号)

如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼的顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 _____________米(结果保留根号).

在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的⌒EF与BC相切于点D,分别交AB、AC于点E、F. (1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及⌒FE所围成的阴影部分的面积.