【分析】根据反比例函数性质求出 k<0,再根据 k=xy,逐项判定即可.
【详解】解:∵反比例函数 y= (k≠0),且在各自象限内,y 随 x 的增大而增大,,
A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;
C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意; 故选:B.
【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.
4. 我们在外卖平台点单时会有点餐用的钱和外卖费 6 元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )
A. 平均数 B. 中位数 C. 众数 D. 方差
【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上 6 得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.
【详解】解:将这组数据都加上 6 得到一组新 数据, 则新数据的平均数改变,众数改变,中位数改变,但是方差不变; 故选:D.
【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.
5. 下列说法正确的是( )
A. 命题一定有逆命题 B. 所有的定理一定有逆定理
C. 真命题的逆命题一定是真命题 D. 假命题的逆命题一定是假命题
【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.
【详解】解:A、命题一定有逆命题,故此选项符合题意;
B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;