第 26/35 页

【点睛】本题考查了三角形与圆的综合问题,考查了等腰三角形的判定及性质、圆周角定理、相似三角形的判定及性质、锐角三角函数及勾股定理的应用,熟练掌握等腰三角形三线合一的性质及三角形相似对应边成比例的性质是解题的关键.

21. 如图,在平面直角坐标系中,一次函数 1y kx b= + 的图象与反比例函数 2

= 的图象交于A、 B两点,且A点的横坐标为 1,过点 B作 BE x∥ 轴, AD BE^ 于点D,点

C 是直线 BE上一点,且

(1)求一次函数与反比例函数的解析式;

(2)根据图象,请直接写出不等式 0mkx b

+ - < 的解集.

【答案】(1) 1

(2) 4x < - 或0 1x< <

【分析】(1)根据点 C 的坐标及点A点的横坐标,可求得 CD 的长和点 B 的纵坐标,进而可求得 AC 的长,利用勾股定理即可求得 AD,进而点 A 的坐标,进而可求得反比例函数的解析式,进而可求得点 B 的坐标,再利用待定系数法即可求得一次函数解析式.

(2)变形不等式为

+ < ,即 1 2y y< ,根据数形结合,找出反比例函数图象在一次函数图象上方的部分即可求解.

【小问 1 详解】