第 20/28 页

2)由(1)得 S= ,

∵S随 d的增大而减小,

∴当 16≤d≤25 时,400≤S≤625,

21.(8 分)已知 T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.

(1)化简 T;

(2)若关于 x的方程 x2+2ax﹣ab+1=0 有两个相等的实数根,求 T的值.

【分析】(1)根据完全平方公式和平方差公式化简 T;

(2)根据根的判别式可求 a2+ab,再代入计算可求 T的值.

【解答】解:(1)T=(a+3b)2+(2a+3b)(2a﹣3b)+a2

(2)∵关于 x的方程 x2+2ax﹣ab+1=0 有两个相等的实数根,

22.(10 分)如图,AB是⊙O的直径,点 C在⊙O上,且 AC=8,BC=6.

(1)尺规作图:过点 O作 AC的垂线,交劣弧 于点 D,连接 CD(保留作图痕迹,不写作法);

(2)在(1)所作的图形中,求点 O到 AC的距离及 sin∠ACD的值.

【分析】(1)利用尺规作图,作线段 AC的垂直平分线即可;

(2)根据垂径定理、勾股定理可求出直径 AB=10,AE=EC=3,由三角形中位线定理可求出 OE,即点 O 到 AC 的距离,在直角三角形 CDE 中,求出 DE,由勾股定理求出

CD,再根据锐角三角函数的定义可求出答案.