设X1,X2,…,Xn为来自均值为θ的指数分布总体的简单随机样本,Y1,Y2,…,Ym为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中θ(θ>0)是未知参数.利用样本X1,X2,…,Xn,Y1,Y2,…,Ym求θ的最大似然估计量θ ̂,并求D(θ ̂).
由题知,X的概率密度为fX (x,θ)=,Y的概率密度为fY (y,θ)=.令L=fX (xi,θ)fY (yj,θ) =1/θ e-xi/θ 1/2θ e-yj/2θ (xi>0,yj>0,i=1,2,…,n,j=1,2,…,m).则lnL=(-lnθ-xi/θ)+(ln 1/2-lnθ-yj/2θ).∴dlnL/dθ=(-1/θ+xi/θ2 )+(-1/θ+yj/(...
查看完整答案,请下载word版
设A,B为随机事件,且0<P(B)<1,下列命题中为假命题的是【 】
甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数.
在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.(1) 求X的概率密度;(2) 求Z的概率密度;(3) 求E(X/Y).
进行一系列独立复生试验,每次成功概率为P,则在成功2次前失败3次的概率为。
设A,B为两事件,且P(A)=1/2,P(B)=1/3,P(A│B)=1/6,则P(A ̅│B ̅ )=【 】
随机变量z ~ N(2,32),则y=3z-2的数学期望为【 】
甲袋中有2个红球3个白球,乙袋中也有2个红球3个白球,现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取2个球。求最后取出的2个球全是白球的概率。