设A为任一n阶矩阵,数λ>0,证明λI+AT A为正定矩阵。
对任意X≠0,
XT(λI+ATA)X=λXTX+XTATAX=λXTX+(AX)TAX≥λXTX>0,
又λI+ATA为对称矩阵,
所以λI+ATA为正定矩阵。
二次型f(x1,x2,x3 ) = (x1 + x2)2 + (x2 + x3)2 - (x3 - x1)2的正惯性指数依次为【 】
设A = aij为3阶矩阵,Aij为代数余子式,若A的每行元素之和均为2,且|A| = 3,A11 + A21 + A31 = .
已知矩阵A=,若下三角可逆矩阵P和上三角可逆矩阵Q使PAQ为对角矩阵,则P,Q可以分别取【 】
设矩阵A=仅有两个不同的特征值.若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
A为4阶方阵,其特征值为-1,1,2,3,A*为A的伴随矩阵,则|A*|=。