若实数x,y,z满足2+log2x=3+log3y=5+log5z,则x,y,z的大小关系不可能是【 】
A、x>y>z
B、x>z>y
C、y>x>z
D、y>z>x
【解析】
解答过程见word版
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 .
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.
已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.