题吧,智能辅助学习中心

单项选择(数学·2022年·浙江省

已知2a=5,⁡log83=b,则4a-3b=【 】

A、25

B、5

C、25/9

D、5/3

解答提示

C

【解析】

因为2a=5,b=log8⁡3=1/3 log2⁡3,即23b=3,所以4a-3b=4a/43b =(2a)2/(23b)2 =52/32 =25/9.

若 2a + log2a = 4b + 2log4b, 则【 】

设 alog34 = 2, 则 4−a =【 】

已知函数 f(x) = ex − a(x + 2),(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 若 f(x) 有两个零点, 求 a 的取值范围.

Logistic 模型是常用数学模型之一, 可应用于流行病学领域. 有学者根据公布数据建立了某地区新冠肺炎 累计确诊病例数 I(t) (t 的单位: 天) 的 Logistic 模型: I(t) = , 其中 K 为最大确诊病例数. 当 I(t∗) = 0.95K 时, 标志已初步遏制疫情, 则 t∗ 约为 (ln19 ≈ 3)【 】

基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数. 基本再生数指一个感染者传染的平均人数, 世代间隔指相邻两代间传染所需的平均时间. 在新冠肺炎疫情初始阶段, 可以用指数模型: I(t) = ert 描述累计感染病例数 I(t) 随时间 t (单位: 天) 的变化规律, 指数增长率 r 与 R0, T 近似满足 R0 = 1 + rT. 有学者基于已有数据估计出 R0 = 3.28, T = 6. 据此, 在新冠肺炎疫情初始阶段, 累计感染病例数增加 1 倍需要的时间约为(ln 2 ≈ 0.69)【 】

已知 1 < a ⩽ 2, 函数 f(x) = ex − x − a, 其中 e = 2.71828 … 为自然对数的底数.(I) 证明: 函数 y = f(x) 在 (0, +∞) 上有唯一零点;(II) 记 x0 为函数 y = f(x) 在 (0, +∞) 上的零点, 证明:(i) ≤x0≤;(ii) x0 f()≥(e-1)(a-1)a .

1978年全国统考高考试题2442

已知log189=a(a≠2),18b=5,求log3645.

美国的物价从 1939 年的 100 增到四十年后 1979年的 500 ,如果每年物价增长率相同,问每年增长百分之几?(注意:自然对数 Inx 是以 e = 2.718 … 为底的对数.本题中增长率 x < 0.1,可用自然对数的近似公式:ln(1+x)≈x,取lg2=0.3 , In10=2.3 来计算.)

证明对数换底公式:logbN=logaN/logab.(a,b,N都是正数,a≠1,b≠1)