已知函数y=f(x)的图像是自原点出发的一条折线.当n≤y≤n+1(n=0,1,2⋯)时,该图像是斜率为bn的线段(其中正常数b≠1),设数列{xn }由f(xn)=n(n=1,2⋯)定义.
(Ⅰ)求x1,x2和xn的表达式;
(Ⅱ)求f(x)的表达式,并写出其定义域;
(Ⅲ)证明:y=f(x)的图像与y=x的图像没有横坐标大于1的交点.
(Ⅰ)依题意f(0)=0,又由f(x1 )=1,当0≤y≤1时,函数y=f(x)的图像是斜率为b^0=1的线段,故由=1,得x1=1.又由f(x2 )=2,当1≤y≤2时,函数y=f(x)的图像是斜率为b的线段,故由=b即x2-x1=1/b得x2=1+1/b.记x_0=0由函数y=f(x)图像中第n段线段的斜率为bn-1,故得=bn-1又f(xn )=n,f(xn-1 )=n-1,∴xn-xn-1=(1/b)n-1,n=1,2⋯.由此知数列{xn-xn-1 }为等比数列,其首项为1,公比为1/b.因b≠1,得xn=(x_k-x_(k-1) ) =1+1/b+⋯+1/bn-1 =,即xn=.(Ⅱ)当0≤x≤1,从(Ⅰ)可知y=x,即当0≤x≤1是f(x)=x.当n≤y≤n+1时,即当xn≤x≤xn+1时,由(Ⅰ)可知f(x)=n+bn (x-xn ) (xn≤x≤xn+1,n=0,1,2,3⋯).为求函数f(x)的定义域,须对xn=(b-(1/b)n-1)/(b-1) (n=0,1,2,3⋯)进行讨论.当b>1时,xn= =b/(b-1);当0<b<1...
查看完整答案,请下载word版
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 .
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.
已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
若定义在 R 的奇函数 f(x) 在 (−∞, 0) 单调递减, 且 f(2) = 0, 则满足 xf(x − 1) ⩾ 0 的 x 的取值范围是【 】