设曲线C的方程是y=x3 - x,将C沿x轴,y轴正向分别平行移动t,s单位长度后得曲线C1.
(Ⅰ)写出曲线C1的方程;
(Ⅱ)证明曲线C与C1关于点A(t/2,s/2)对称;
(Ⅲ)如果曲线C与C1有且仅有一个公共点,证明s=t3/4 - t且t≠0.
(Ⅰ)曲线C1的方程我为y=(x-t)3-(x-t)+s (Ⅱ)在曲线C是任取一点B1 (x1,y1 ).设B2 (x2,y2 )是B1关于点A的对称点,则有(x1,y1)/2=t/2,(y1+y2)/(2.)=s/2.∴x1=t-x2,y1=s-y2.代入曲线C的方程,得x2和y2满足方程:s-y2=(t-x2 )3-(t-x2),即y2=(x2-t)3-(x2-t)+s,可知点B2 (...
查看完整答案,请下载word版
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 .
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.
已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
若定义在 R 的奇函数 f(x) 在 (−∞, 0) 单调递减, 且 f(2) = 0, 则满足 xf(x − 1) ⩾ 0 的 x 的取值范围是【 】