题吧,智能辅助学习中心

证 明 题(数学·1997年·全国统考

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.

(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;

(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?

解答提示

(Ⅰ)依题意知,汽车从甲地匀速行驶到乙地所用时间为s/v,全程运输成本为y=a•s/v+bv2•s/v=s(a/v+bv),故所求函数及其定义域为y=s(a/v+bv),v∈ (0,c].(Ⅱ)依题意知s,a,b,v都为正数,故有s(a/v+bv)≥2s.当且仅有a/v=bv,即v=时上式中等号成立.若≤c,则当v=时,全程运输成本y最小.若>c,则当v∈ (0,c]时,有s(a...

查看完整答案,请下载word版

若 z = 1 +i,则|z2 −2z| =【】

设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

的展开式中 x3y3 的系数为【 】

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

已知 ⊙M : x2 + y2 − 2x − 2y − 2 = 0,直线 l : 2x + y + 2 = 0, P 为 l 上的动点. 过点 P 作 ⊙M 的切线PA, PB, 切点为 A, B, 当 |PM| · |AB| 最小时, 直线 AB 的方程为【 】

设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =.

已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 .