第 30/31 页

【分析】(1)把 m=3,n=1代入组合函数中,化简后进行判断即可;

(2)①先求出点 P的坐标 和“组合函数”

,把 代入“组合函数”,再根据题意,列不等式求解即可;②将点 P代入“组合函数”,整理得 m+n=1,把 n=1-m代入“组合函数”,消去 n,把 y=0代入解一元一次方程即可求解.

【小问 1详解】 解: 是函数 的“组合函数”, 理由:由函数 的“组合函数”为: , 把 m=3,n=1代入上式,得 , 函数 是函数 的“组合函数”;

【小问 2详解】 解:①解方程组 得 ,

函数 与 的图像相交于点 P, 点 P 的坐标为 , 的“组合函数”为 ,

,点 P 在函数 的“组合函数”图像的上方,

,整理,得 ,

p 的取值范围为 ;

②存在,理由如下: 函数 的“组合函数”图像经过点 P. 将点 P 坐标 代入“组合函数” ,得 将 代入 = ,

的 ( )2 1, 1p p+ - ( ) 3 2y m n x pn mp m= - + - -