如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.
(1)当点P是BC的中点时,求证:△ABP≌△ECP;
(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.
①证明FA=FP,并求出在(1)条件下AF的值;
②连接B'C,求△PCB'周长的最小值;
③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.
(1)如图,在矩形ABCD中,AB//DC,即AB//DE,∴∠1=∠E,∠2=∠B,∵P是BC的中点,∴BP=CP,∴△ABP≌△ECP(AAS).(2)①如图,在矩形ABCD中,AD//BC,∴∠3=∠FAP.由折叠可知∠3=∠4,∴∠FAP=∠4,∴FA=FP.在矩形ABCD中,BC=AD=8,∵点P是BC的中点,∴BP=1/2 BC=4.由折叠可知,AB'=AB=6,PB'=PB=4,∠B=∠AB' P=∠AB' F=90°.设FA=x,则FP=x,FB'=x-4.设Rt△AB'F中,由勾股定理得AF2=B' A2+B' F2,∴x2=62+(x-4)2,解得x=13/2,即AF=13/2.②如图,由折叠可知,AB'=AB=6,B' P=BP,∴三角形PCB'的周长为CP+PB'+CB'=CB+CB'=8+C...
查看完整答案,请下载word版
自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是【 】
下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是【 】
泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】
如图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.
某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是【 】
如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】
如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为cm.
如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F,求∠C和∠E的度数.
如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm ,菱形的边长AB=20cm ,则∠DAB的度数是【 】
如图,在菱形ABCD中,∠A=30°,取大于1/2 AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为.