题吧,智能辅助学习中心

单项选择(数学·2022年·全国乙·文

已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为【 】

A、1/3

B、1/2

C、√3/3

D、√2/2

解答提示

C设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S_ABCD=1/2⋅AC⋅BD⋅sin⁡α≤1/2⋅AC⋅BD≤1/2⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等...

查看完整答案,请下载word版

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = .

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】

如图为某几何体的三视图, 则该几何体的表面积是【 】

已知圆锥的底面半径为 1, 母线长为 3, 则该圆锥内半径最大的球的体积为.

如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.

某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为【 】

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

某几何体的三视图 (单位: cm) 如图所示, 则该几何体的体积 (单位: cm3) 是【 】