如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为【 】
A、8
B、12
C、16
D、20
【解析】
由三视图还原几何体,如图,
则该直四棱柱的体积V=(2+4)/2×2×2=12.
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =.
已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 .
已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.
已知圆 x2 + y2 −6x = 0, 过点 (1,2) 的直线被该圆所截得的弦的长度的最小值为【 】
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = .
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】
已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】
已知圆锥的底面半径为 1, 母线长为 3, 则该圆锥内半径最大的球的体积为.
已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为.
如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】
某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为【 】
某几何体的三视图 (单位: cm) 如图所示, 则该几何体的体积 (单位: cm3) 是【 】
如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是.
如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.
向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图像如图所示,那么水瓶的形状是【 】
如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为【 】