已知平面区域D={(x,y)|0≤y≤1/(x),x≥1}.
(1)求D的面积;
(2)求D绕x轴旋转所成旋转体的体积.
(1)由题设条件可知:S=1/(x√(1+x2 )) dx=x/(x2 √(1+x2 )) dx令t=√(1+x2 ),则上式化为S=t/((t2-1)t) dt=1/2·ln(t-1)/(t+1)...
查看完整答案,请下载word版
设f′(sin2x)=cos2x+tan2x,0<x<1,试求函数f(x).
已知定义于R的函数f(x)满足f′(lnx)=又f(0)=1,则f(x)=。
设Σ为空间区域{(x,y,z)|x2 + 4y2≤4,0≤z≤2}表面的外侧,则曲面积分∬Σx2dydz + y2dzdx + z2dxdy=.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
已知函数f(t)=dxsin(x/y)dy,则f'(π/2)=.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.