说明理由并证明:在什么条件下,方程F(x1,x2,⋯,xn )=0都能在x0∈Rn附近唯一确定可微函数xj=xj (x1,⋯,xj-1,xj+1,⋯,xn).并在x0附近,求(∂x1)/(∂x2 )(x)∙(∂x2)/(∂x3 )(x)⋯(∂xn-1)/(∂xn )(x)∙(∂xn)/(∂x1 )(x).
当F满足以下条件时, (1) F(x1,x2,⋯,xn)在以x_0=(x10,x20,⋯,xn0 )为内点的区域D⊂Rn上连续;(2) F(x10,x20,⋯,xn0 )=0;(3) Fx1,Fx2,⋯,Fxn在D上存在且连续;(4) F_(xj ) (x10,x20,⋯,xn0)≠0(j=1,2,⋯,n).有:(1)存在某U(x0)⊂D,在U(x0)上方程F(x1,x2,⋯,xn )=0唯一确定了一个定义在Qj=(x1...
查看完整答案,请下载word版
函数y=sinx|sinx|(其中|x|≤π/2)的反函数为.
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
设y=y(x)由方程xef(y)=eyln29确定,其中具有二阶导数,f'≠1,则= .
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.