设函数f(x)=e/2x+lnx (x>0).
(1)求f(x)的单调区间;
(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1 )),(x2,f(x2 )),(x_3,f(x_3 ))处的切线都经过点(a,b).证明:
(ⅰ)若a>e,则0<b-f(a)<1/2 (a/e-1);
(ⅱ)若0<a<e,x1<x2<x_3,则2/e+(e-a)/(6e2 )<1/x1 +1/x_3 <2/a-(e-a)/(6e2 ).
(注:e=2.71828⋯是自然对数的底数)
(1)f' (x)=-e/(2x2 )+1/x=(2x-e)/(2x2 ),当0<x<e/2,f' (x)<0;当x>e/2,f' (x)>0,故f(x)的减区间为(0,e/2),f(x)的增区间为(e/2,+∞).(2)(ⅰ)因为过(a,b)有三条不同的切线,设切点为(xi,f(xi )),i=1,2,3,故f(xi )-b=f' (xi )(xi-a),故方程f(x)-b=f' (x)(x-a)有3个不同的根,该方程可整理为(1/x-e/(2x2 ))(x-a)-e/2x-lnx+b=0,设g(x)=(1/x-e/(2x2 ))(x-a)-e/2x-lnx+b,则g' (x)=1/x-e/(2x2 )+(-1/x2 +e/x3 )(x-a)-1/x+e/(2x2 )=-1/x3 (x-e)(x-a),当0<x<e或x>a时,g' (x)<0;当e<x<a时,g' (x)>0,故g(x)在(0,e),(a,+∞)上为减函数,在(e,a)上为增函数,因为g(x)有3个不同的零点,故g(e)<0且g(a)>0,故(1/e-e/(2 e 2 ))(e-a)-e/2e-lne+b<0且(1/a-e/(2a2 ))(a-a)-e/2a-lna+b>0,整理得到:b<a/2e +1且b>e/2a+lna=f(a),此时b-f(a)-1/2 (a/e-1)<a/2e+1-(e/2a+lna )-a/2e+1/2=3/2-e/2a-lna,设u(a)=3/2-e/2a-lna,则u' (a)=(e-2 a)/(2a2 )<0,故u(a)为(e,+∞)上的减函数,故u(a)<3/2-e/2e-lne=0,故0<b-f(a)<1/2 (a/e-1) (ⅱ)当0<a<e时,同(ⅰ)中讨论可得:故g(x)在(0,a),(e,+∞)上为减函数,在(a,e)上为增函数,不妨设x1<x2<x3,则0<x1<a<x2<e<x3,因为g(x)有3个不同的零点,故g(a)<0且g(e)>0,故(1/e-e/(2 e 2 ))(e-a)-e/2e-lne+b>0且(1/a-e/(2a2 ))(a-a)-e/2a-lna+b<0,整理得到:a/2e +1<b<a/2e +lna,因为x1<x2<x3,故0<x1<a<x2<e<x3,又g(x)=1-(a+e)/x+ea/(2x2 )-lnx+b,设t=e/x,a/e=m∈(0,1),则方程1-(a+e)/x+ea/(2x2 )-lnx+b=0即为:...
查看完整答案,请下载word版
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =.
已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 .
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
若 2a + log2a = 4b + 2log4b, 则【 】
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 .
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.