若函数f(x)在[0,1]上连续,f(0)=0,f(1)=1,则对任何自然数n≥1,存在ξ_n∈[0,1],使得f(ξn+1/n)=f(ξn )+1/n.
假设∃n,对∀ξn∈[0,1]都有f(ξn+1/n)≠f(ξn )+1/n.令F(x)=f(x+1/n)-f(x)-1/n,根据假设知F(x)在[0,1]上无零点,又F(x)在[0,1]上连续,所以F(x)在[0,1]上不变号.将[0,1]区间n等分,记xk=k/n,k=0,1,…,n,根据题目条件有:0=f(0)-0+[(f...
查看完整答案,请下载word版
函数y=sinx|sinx|(其中|x|≤π/2)的反函数为.
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
证明:两条心脏线ρ=α(1+cosθ)与ρ=α(1+cosθ)在交点处的切线相互垂直.
设y=y(x)由方程xef(y)=eyln29确定,其中具有二阶导数,f'≠1,则= .
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .