在椭圆x2/a2 +y2/b2 =1的第一象限上求一点P,使该点处的切线、椭圆及两坐标轴所围成图形面积为最小(其中a>0,b>0).
设P(x0,y0)为所求点,则此点处椭圆的切线方程为(xx0)/a2 +(yy0)/b2 =1.令x=0,得该切线在y轴上的截距为b2/y0 .令y=0,得该切线在x轴上的截距为a2/x0 .于是所围图形的面积为S=1/2 a2/x0 ∙b2/y0 -1/4 πab,x0∈(0,a).设S_1=x0 y0=(bx0)/a √(a2-x02...
查看完整答案,请下载word版
函数y=sinx|sinx|(其中|x|≤π/2)的反函数为.
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
设y=y(x)由方程xef(y)=eyln29确定,其中具有二阶导数,f'≠1,则= .
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.