计算曲面积分∬S(2x+z)dydz+zdxdy,其中S为有向曲面z=x2+y2 (0≤z≤1),其法向量与z轴正向的夹角为锐角.
记S1:取下侧,则∬S(2x+z)dydz+zdxdy=∬S+S1(2x+z)dydz+zdxdy-∬S1(2x+z)dydz+zdxdy,由高斯公式得∬S+S1(2x+z)dydz+zdxdy=-∭Ω3 dV=-3dz dθ r dr=-3/...
查看完整答案,请下载word版
设Σ为空间区域{(x,y,z)|x2 + 4y2≤4,0≤z≤2}表面的外侧,则曲面积分∬Σx2dydz + y2dzdx + z2dxdy=.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.
曲线(x2 + y2)2 = x2 - y2 (x≥0,y≥0)与x轴围成的区域为D,求xydxdy.
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.