题吧,智能辅助学习中心

证 明 题(数学·2024年·罗马尼亚

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a 2n×2n chessboard; those bishops are numbered from 1 to 2n ,from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:

each bishop moves diagonally, in a straight line, some number of squares, and

at the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations σ of the numbers 1,2,⋯,2n with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order σ(1),σ(2),⋯,σ(2n ), from left to right.

【译】设n是正整数.最开始在一个2n×2n的方格棋盘上的第一行的每个小方格内均放置一枚“象”,这些“象”从左到右依次编号:1,2,⋯,2n.

定义一次“跳跃”操作为同时移动所有的“象”并满足如下条件:

每一枚“象”可沿对角线方向移动任意方格;

在这次“跳跃”操作结束时,所有的“象”恰在同一行的不同方格.

求满足下列条件的数1,2,⋯,2n的排列σ的总个数:存在一系列的“跳跃”操作,使得结束时所有的“象”都在棋盘的最后一行,并且从左到右编号依次为:σ(1),σ(2),⋯,σ(2n ).

解答提示

暂无答案

若 z = 1 +i,则|z2 −2z| =【】

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。

设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。

已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

已知 ⊙M : x2 + y2 − 2x − 2y − 2 = 0,直线 l : 2x + y + 2 = 0, P 为 l 上的动点. 过点 P 作 ⊙M 的切线PA, PB, 切点为 A, B, 当 |PM| · |AB| 最小时, 直线 AB 的方程为【 】

若 2a + log2a = 4b + 2log4b, 则【 】