题吧,智能辅助学习中心

证 明 题(数学·2022年8月2日·东南地区

给定整数m,n≥2.将一个m行n列的方格表S的每个格子染上红、蓝两色之一,使下述条件成立:对于同一行的两个格子,若它们均被染了红色,则它们所属的两列中,一列的所有格子都被染了红色,另一列中有格子被染了蓝色,求不同的染色方式的数目.

解答提示

用(i,j)表示第i行与第j列的交叉格,1≤i≤m,1≤j≤n.分以下三种情况:(1) S中没有一列全为红格.此时,由条件知S的每行至多有一个红格。因此,每行的染色方式有n+1种(全为蓝格的情况1种,恰有一个红格的情况n种),由乘法原理,共得到(n+1)m种染色方式.排除掉其中红格全集中在同一列上的那些情况(n种),共有(n+1)m-n种符合要求的染色方式.(2) S中恰有一列全为红格.设第k列全为红格,其中k∈{1,2,⋯,n}.考虑S中剩余的格子组成的m行n-1列的方格表S(k),则S(k)中没有一列全为红格.与情况(1)类似,可知S(k)的每行至多有一个红格,进而S(k)有nm-(n-1)种...

查看完整答案,请下载word版

若 z = 1 +i,则|z2 −2z| =【】

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。

设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。

已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

已知 ⊙M : x2 + y2 − 2x − 2y − 2 = 0,直线 l : 2x + y + 2 = 0, P 为 l 上的动点. 过点 P 作 ⊙M 的切线PA, PB, 切点为 A, B, 当 |PM| · |AB| 最小时, 直线 AB 的方程为【 】

若 2a + log2a = 4b + 2log4b, 则【 】