Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x.
译文:
给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .
对|S|=n归纳证明.当n=2时,成立;假设n≤m时成立,则n=m+1时:(1)设S={p1<p2<⋯<pm+1 },pi pj=x2+x+k⟺4pi pj=2(2x+1)2+4k-1,记t=4k+1.(2)若当4pm+1 pi=a2+t,由pi≠pj<pm+1知a,b<2pm+1均为奇数,4p...
查看完整答案,请下载word版
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
已知集合 A = {x | x2 −3x−4 < 0},B = {−4,1,3,5}, 则 A∩B=【 】
已知集合 U = {−2, −1, 0, 1, 2, 3}, A = {−1, 0, 1}, B = {1, 2}, 则 CU (A ∪ B) =【 】
4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有种
已知集合 A = {x| |x| < 3, x ∈ Z}, B = {x| |x| > 1, x ∈ Z}, 则 A ∩ B =【 】
执行如图的程序框图, 若输入 k = 0, a = 0, 则输出的 k 为【 】
已知集合 A = {1, 2, 3, 5, 7, 11}, B = {x | 3 < x < 15}, 则 A ∩ B 中元素的个数为【 】