为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
时段 价格变化
第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +
第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +
用频率估计概率.
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).
(1)根据表格数据可以看出,40天里,有16个+,也就是有16天是上涨的,根据古典概型的计算公式,农产品价格上涨的概率为:16/40=0.4;(2)在这 40 天里,有 16 天上涨,14天下跌,10天不变,也就是上涨,下跌,不变的概率分别是0.4,0.35,0.25...
查看完整答案,请下载word版
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】
已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为; 甲、乙两球至少有一个落入盒子的概率为.
将一颗质地均匀的正方体骰子先后抛掷 2 次, 观察向上的点数, 则点数和为 5 的概率是.
从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= (结果用简分数表示).
某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次数品数ξ的概率分布是ξ 0 1 2p
有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3.现任取出3面,它们的颜色与号码均不相同的概率是.