一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(P(B|A))/(P(B ̄|A))与(P(B|A ̄))/(P(B ̄|A ̄))的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:R=P(A|B)/P(A ̄|B)⋅P(A ̄|B ̄)/P(A|B ̄);
(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̄)的估计值,并利用(ⅰ)的结果给出R的估计值.
附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(1)由已知K2=(n(ad-bc)2)/((a+b)(c+d)(a+c)(b+d))=200(40×90-60×10)2/(50×150×100×100)=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)/P(B ̄|A)⋅P(B ̄|A ̄)/P(B|A ̄)=P(AB)/P(A)⋅P(A)/P(AB ̄)⋅P(A ̄B ̄)/P(A ̄)...
查看完整答案,请下载word版
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设一组样本数据 x1, x2, · · · , xn 的方差为 0.01, 则数据 10x1, 10x2, · · · , 10xn 的方差为【 】
在一组样本数据中, 1, 2, 3, 4 出现的频率分别为 p1, p2, p3, p4, 且=1, 则下面四种情形中, 对应样本的标准差最大的一组是【 】
已知 1, 2, a, b 的中位数是 3, 平均数是 4, 则 ab =.
已知一组数据 4, 2a, 3 − a, 5, 6 的平均数为 4, 则 a 的值是.
给出20个数87 91 94 88 93 91 89 87 92 8690 92 88 90 91 86 89 92 95 88它们的和是【 】
一个袋子里装有大小相同的3个红球和2个黄球.从中同时取出2个,则其中含红球个数的数学期望是. (用数字作答)
有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则【 】