题吧,智能辅助学习中心

填 空 题(数学·2021年·浙江省

袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为1/6,一红一黄的概率为1/3,则m-n=_________,E(ξ)=________.

解答提示

1  8/9

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】

某厂接受了一项加工业务, 加工出来的产品 (单位: 件) 按标准分为 A, B, C, D 四个等级. 加工业务约定: 对于A 级品、 B 级品、 C 级品, 厂家每件分别收取加工费 90 元, 50 元, 20 元; 对于 D 级品, 厂家每件要赔偿原料损失费 50 元. 该厂有甲、乙两个分厂可承接加工业务. 甲分厂加工成本费为 25 元/件, 乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品, 并统计了这些产品的等级, 整理如下:(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润, 以平均利润为依据, 厂家应选哪个分厂承接加工业务?

在新冠肺炎疫情防控期间, 某超市开通网上销售业务, 每天能完成 1200 份订单的配货, 由于订单量大幅增 加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知该超市某日积压 500 份订单未配货, 预计第二天新订单是 1600 份的概率为 0.05. 志愿者每人每天能完成 50 份订单的配货, 为使第二天积压订单及当日订 单配货的概率不小于 0.95, 则至少需要志愿者【 】

某沙漠地区经过治理, 生态系统得到很大改善, 野生动物数量有所增加, 为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块, 从这些地块中用简单随机抽样的方法抽取 20 个作为样区, 调查得到样本数据(xi,yi) (i=1,2,…,20), 其中 xi 和 yi 分别表示第 i 个样区的植物覆盖面积 (单位: 公顷) 和这种野生动物的数量,并计算得=60, =1200, =80, =9000, = 800.(1) 求该地区这种野生动物数量的估计值 (这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数) ;(2) 求样本 (xi, yi) (i = 1, 2, … , 20) 的相关系数 (精确到 0.01) ;(3) 根据现有统计资料, 各地块间植物覆盖面积差异很大, 为提高样本的代表性以获得该地区这种野生动物数量更准确的估计, 请给出一种你认为更合理的抽样方法, 并说明理由.附: 相关系数 r = , ≈ 1.414.

某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到公园锻炼的人次, 整理数据得到下表 (单位: 天):(1) 分别估计该市一天的空气质量等级为 1, 2, 3, 4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值 (同一组中的数据用改组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2, 则称这天“空气质量好” ; 若某天的空气质量等级为 3 或 4, 则称这天“空气质量不好” . 根据所给数据, 完成下列的 2 × 2 列联表, 并根据列联表, 判断是否有 95% 的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

为加强环境保护, 治理空气污染, 环境监测部门对某市空气质量进行调研, 随机抽查了 100 天空气中的 PM2.5和SO2 浓度 (单位: ug/m3), 得下表:(1) 估计事件“该市一天空气中 PM2.5 浓度不超过 75, 且SO2 浓度不超过 150”的概率;(2) 根据所给数据, 完成下面的 2 × 2 列联表:(3) 根据 (2) 中的列联表, 判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与SO2 浓度有关?附:

为满足人民对美好生活的向往, 环保部门要求相关企业加强污水治理, 排放未达标的企业要限期整改. 设企业的污水排放量 W 与时间 t 的关系为 W = f(t). 用 -(f(b)-f(a))/(b-a)的大小评价在 [a, b] 这段时间内企业污水治理能力的强弱. 已知整改期内, 甲、乙两企业的污水排放量与时间的关系如下图所示.① 在 [t1, t2] 这段时间内, 甲企业的污水治理能力比乙企业强;② 在 t2 时刻, 甲企业的污水治理能力比乙企业强;③ 在 t3 时刻, 甲、乙两企业的污水排放都已达标;④ 甲企业在 [0, t1], [t1, t2], [t2, t3] 这三段时间中, 在 [0, t1] 的污水治理能力最强.其中所有正确结论的序号是.

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

设一组样本数据 x1, x2, · · · , xn 的方差为 0.01, 则数据 10x1, 10x2, · · · , 10xn 的方差为【 】

在一组样本数据中, 1, 2, 3, 4 出现的频率分别为 p1, p2, p3, p4, 且=1, 则下面四种情形中, 对应样本的标准差最大的一组是【 】

已知 1, 2, a, b 的中位数是 3, 平均数是 4, 则 ab =.

盒中有 4 个球, 其中 1 个红球, 1 个绿球, 2 个黄球, 从盒中随机取球, 每次取 1 个, 不放回, 直到取出红球为止, 设此过程中取到黄球的个数为 ξ, 则 P (ξ = 0) = , E(ξ) = .

已知一组数据 4, 2a, 3 − a, 5, 6 的平均数为 4, 则 a 的值是.

随机变量ξ的概率分布律由下表给出: 该随机变量ξ的均值是.

给出20个数87 91 94 88 93 91 89 87 92 8690 92 88 90 91 86 89 92 95 88它们的和是【 】

一个袋子里装有大小相同的3个红球和2个黄球.从中同时取出2个,则其中含红球个数的数学期望是. (用数字作答)

有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则【 】

某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了 10 件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x ̅ 和 y ̅,样本方差分别记为S12和S22.(1) 求x ̅ , y ̅ , S12,S22;(2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y ̅ - x ̅ ≥2,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高 ).