题吧,智能辅助学习中心

单项选择(数学·2024年·新高考Ⅱ

已知正三棱台ABC-A1B1C1的体积为52/3,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为【 】

A、1/2

B、1

C、2

D、3

解答提示

B

【解析】

解答过程见word版

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = .

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】

已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】

如图为某几何体的三视图, 则该几何体的表面积是【 】

已知圆锥的底面半径为 1, 母线长为 3, 则该圆锥内半径最大的球的体积为.

已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为.

一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.

已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于.

已知圆台的上、下底面半径分别为r,2r,侧面积等于上、下底面积之和,则圆台的高为.

已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为【 】

圆台上、下底面积分别为π,4π侧面积为6π,这个圆台的体积是【 】

如果棱台的两底面积分别是S,S',中截面的面积是S0,那么【 】

如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=【 】

工人师傅要用铁皮做一个上大下小的正四棱台形容器(上面开口),使其容积为208立方分米,高为4分米,上口边长与下底面边长的比为5:2,做这样的容器需要多少平方分米的铁皮?(不计容器的厚度和加工余量,不要求写出已知、求解,直接求解并画图即可)

南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)【 】

正三棱台高为1,上下底边长分别为3√3和4√3,所有顶点在同一球面上,则球的表面积是【 】