已知正方体ABCD-A1B1C1D1,则【 】
A、直线BC1与DA1所成的角为90°
B、直线BC1与CA1所成的角为45°
C、直线BC1与平面BB1 DD1所成的角为45°
D、直线BC1与平面ABCD所成的角为45°
ABD如图,连接 B1C、BC1,因为DA1//B1C,所以直线 与 所成的角即为直线 与DA1所成的角,因为四边形BB1C1C为正方形,则B1C⊥BC1 ,故直线 与DA1所成的角为90°,A正确;连接A1C,因为A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,则A1B1⊥BC1,因为B1C⊥BC1 ,A1B1∩B1C=B1,所以BC1⊥平面 ,又A1C⊂平面 ,所以BC1⊥CA1,故B正确;连接A1C1,设A1C1∩B1D1=O,连接BO,因为BB...
查看完整答案,请下载word版
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = .
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】
若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】
如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】
已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =.
已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 .
已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.
已知圆 x2 + y2 −6x = 0, 过点 (1,2) 的直线被该圆所截得的弦的长度的最小值为【 】
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】