题吧,智能辅助学习中心

证 明 题(数学·2016年·广东省广州市

已知抛物线y=mx²+(1-2m)x+1-3m与x轴相交于不同的两点A,B,

(1)求m的取值范围;

(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;

(3)当1/4<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值,若有,求出最值及相对应的m值;若没有,请说明理由.

解答提示

解答过程见word版

下列运算正确的是【 】

不等式组的解集是【 】

如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).,,,,…

下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.= 第一步= 第二步= 第三步= 第四步= 第五步= 第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是或填为;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.

2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.

若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为【 】

观察等式: 2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200若2100=S,用含S的式子表示这组数据的和是【】

分解因式:m3n - mn=.

一个三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,则该三角形的周长为.

已知a+2b=10/3,3a+4b=16/3,则a+b的值为.

已知点A(x1,y1 ),B(x2,y2 ),C(x3,y3 )都在反比例函数y=k/x (k<0)的图像上,且x1<x2<0<x3,则y1,y2,y3的大小关系是【】

已知函数y=,则自变量x的取值范围是.

如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k/x (k≠0)的图象交于第二、四象限的点A(-2,a)和点B(b,-1),过A点作x轴的垂线,垂足为点C,ΔAOC的面积为4. (1)分别求出a和b的值;(2)结合图象直接写出mx+n>k/x中x的取值范围;(3)在y轴上取点P,使PB-PA取得最大值时,求出点P的坐标.

已知y=-x+5,当x分别取1,2,3,……,2020时,所对应y值的总和是.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.

如图,点A是反比例函数y=3/x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.

如图,一次函数y=x+1的图象与反比例函数y=k/x的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k/x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k/x的图象没有公共点.

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下: (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

把1-9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为【 】

若二次函数y=ax2+bx+c的图像与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2 ),且经过点A(0,2),过点A的直线l与x轴交于点C,与该函数的图像交于点B (异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=5/21.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.

竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】

如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(-2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB. (1)求抛物线的函数表达式;(2)当ΔBCD的面积等于ΔAOC的面积的3/4时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.

如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求ΔPAC面积的最大值及此时点P的坐标.

把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为【 】

如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论: abc>0;②b2-4ac>0;③8a+c 正确的有【 】

如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.

已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0 (m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n (0<n<m)有两个整数根,这两个整数根是【 】

2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?