设集合M={(i,j,s,t)|i∈{1,2},j∈{3,4},s∈{5,6},t∈{7,8},2|(i+j+s+t)}.对于给定的有穷序列A:{a_n}(1≤n≤8),及序列Ω:ω1,ω2,⋯,ωs,ω_k=(i_k,j_k,s_k,t_k )∈M,定义变换T:将数列A的第i1,j1,s1,t1项加1,得到数列T1 (A);将数列T1 (A)的第i2,j2,s2,t2项加1,得到数列T2 T1 (A),⋯;重复上述操作,得到数列Ts⋯T2 T1 (A),记为Ω(A).
(1)给定数列A:1,3,2,4,3,1,9和序列Ω:(1,3,5,7),(2,4,6,8),(1,3,5,7),写出Q(A);
(2)是否存在序列Ω,使得Ω(A)为a1+2,a2+6,a3+4,a4+2,a5+8,a6+2,a7+4,a8+4,若存在,写出一个符合条件的Ω,若不存在,说明理由;
(3)若数列A的各项均为正整数,且a1+a3+a5+a7为偶数,证明:“存在序列Ω,使得Ω(A)为常数列”的充要条件为“a1+a2=a3+a4=a5+a6=a7+a8”.
解答过程见word版
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =.
已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 .
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
若 2a + log2a = 4b + 2log4b, 则【 】
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 .
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = .
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】