如图,在平面直角坐标系中,抛物线y=1/4 x²+bx+c与x轴交于A,B,与y轴交于C,其中B(3,0),C(0,-3).
(1)求该抛物线的表达式;
(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.
答案见word版