设u(x,y)=ex(xsiny+ycosy),求出解析函数f(z)=u(x,y)+iv(x,y).
.∂u/∂x=∂v/∂y=ex (xcosy+cosy-ysiny),∂u/∂y=-∂v/∂x=ex (xsiny+ycosy-siny),du=ex [(x+1)cosy-ysiny]dx-ex [(x+1)siny+ycosy]dy.u(x,y)=ex [(x+1)cosy-ysiny]dx-ex [(x+1)siny+ycosy]dy=ex [(x+1)cosy0-...
查看完整答案,请下载word版
设f′(sin2x)=cos2x+tan2x,0<x<1,试求函数f(x).
已知定义于R的函数f(x)满足f′(lnx)=又f(0)=1,则f(x)=。
设Σ为空间区域{(x,y,z)|x2 + 4y2≤4,0≤z≤2}表面的外侧,则曲面积分∬Σx2dydz + y2dzdx + z2dxdy=.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.